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Theoretical estimation ofthe effect of interfacial 
energy on the mechanical strength of spinodally 
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New "interfaces" are produced on the slip plane when a crystal with continuous 
composition fluctuation arising from spinodal decomposition is deformed by slip. In this 
work, the energy of such "interfaces" is evaluated for both modulated and mottled 
structures, and their effects on slip behaviour are discussed. It is concluded that the 
contribution of this "interracial energy" is large enough to account for the age-hardening 
concomitant with spinodal decomposition. 

1. Introduction 
Some supersaturated solid solutions have been 
reported to show rapid increase in the mechanical 
strength during the early stage of spinodal phase 
decomposition. According to a theory developed 
by Cahn on the age-hardening of spinodally 
decomposed alloys [1], such hardening has been 
accounted for by the interaction of dislocations 
with internal stress fields arising from the 
fluctuation of lattice spacing. However, it seems to 
be uncertain whether or not the fine stress fields, 
produced at the early stage of ageing, act as an 
effective obstacle to dislocation motion, because 
the wavelength of the stress field may be too small 
to bend dislocations along its potential valley. It 
has, in fact, been reported in some papers that 
Cahn's prediction gives too small a yield strength 
to account for the experimental values [2, 3].  In 
such fine microstructures, the interfacial energy on 
the slip plane may be more effective than the 
internal stress in hindering dislocation motion. 

In the present work, the force on dislocations 
caused by the change of interfacial energy 
associated with the dislocation glide has been 
quantitatively derived. 

2. Morphology of microstructures produced 
by spinodal decomposition 

Microstructures in spinodally decomposed alloys 
are morphologically classified into two types. 
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According to Cahn's theory on spinodal decom- 
position [4], the change of composition fluctuation 
with ageing can be expressed as a result of increase 
or decrease of the amplitude of each Fourier 
component: 

C = Co + ~ A~ exp [R(/3) t] �9 cos (/3-r) 

( la) 

R(/3) = --M132 (f ;  ' + 2172 Y<hkl> + 2Kfl 2) 
( lb)  

where Co is an average composition of the alloy, 
At3 i s an initial amplitude of the Fourier component 
whose wavenumber is t ,  r is a distance in the 
crystal, t is the ageing time. R(~) is a so-called 
amplification factor, M the mobility of solute 
atoms, fo the free energy of the supersaturated solid 
solution, Y<hkt> is an elastic modulus in the (h k/) 
direction and K is a gradient energy having a 
positive value for the alloy exhibiting phase 
separation, r~ is the partial derivative of the lattice 
parameter a, with respect to the solute concen- 
tration c, (l /a) (Oa/Oc). Being positive, the elastic 
energy term 2rl2Y(hlet) in Equation lb always 
restrains the spinodal decomposition, so that the 
decomposition tends to occur along the direction 
with minimum Y(hkl~. Since Y<hkz> is minimum 
along the three orthogonal (100)  directions in 
most cubic structure alloys, the periodic zone 
arrangement aligned with the three cubic directions 
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should be formed when ~ is fairly large. Such 
microstructure is called a "modulated structure". 
On the other hand, if the alloy has either isotropic 
elasticity or small ~7, spinodal decomposition 
produces a random zone arrangement, because 
R(/3) is independent of crystallographic direction. 
This microstructure is called a "mottled structure". 
In the next section, the dragging force on 
dislocations due to the interfacial energy is derived 
theoretically for both types of microstructure. 

3. Dragging force on dislocations in the 
modulated structure 

3.1. Face-centred cubic lattice 
Consider the case where a single sinusoidal compo- 
sition wave, the wavenumber and amplitude of 
which are ~ and A/3 respectively, appears along 
each cubic direction [100] ,  [010]  and [001]  to 
dominate the morphology of microstructure. The 
concentration of solute atoms at any point in the 
conventional (X, Y, Z) co-ordinates is expressed 
by Equation 2: 

C(X, Y,Z)  = Co 

+ A (cos 13X + cos flY + cos t3Z)/3. (2) 

In order to simplify the calculation, the (X, Y, Z) 
co-ordinates are rotated to new (x, y, z) 
co-ordinates, which are defined as follows: the 
x-axis is in the [] '10] direction, i.e. the slip 
direction in the f cc  lattice; the y-axis is in the 
[112] direction, perpendicular to the Burgers 
vector and laid on the slip plane (111) ;  and the 
z-axis is in the [111]  direction normal to the slip 
plane. Solute concentration at, a point (x, y,  z) 
in the new co-ordinates is described by Equation 
3: 

C(x,y,  z) = Co + A {2 cos/3(,v/x/6--z/x/3) 

cos (fix/x/2) + cos/3(2y/x/6 + z/~/3)}/3. (3) 

Suppose N dislocations with Burgers vector b have 
passed on a slip plane. Then a difference in 
concentration, ACN, is created between the two 
opposing atomic planes just above and below the 
glide plane, as given in Equation 4: 

ACN(X , y, z) = C(x, y,  z) -- C(x--Nb, y, z) 

= --(4/3)A cos/3(y/x/6--z/x/3) 

sin [t3(x -- Nb/2)/X/2] sin (13Nb/2 X/2). 
(4) 
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An interracial energy 3' per unit area of the slip 
plane is expressed as a sum of the chemical inter- 
facial energy and the elastic strain energy. The 
former is concerned with a short-range force 
related to the binding energy of atom-pairs across 
the slip plane [5], while the latter is a long range 
force resulting from the misfit in lattice spacing 
[6]. Thus 

7 = {2UE Uns + kur/z}(ACu) 2 (5) 

where UE is the interchange energy of atom-pairs 
defined by UE = UAB -- (UAA + UBB)/2 (Uu is 
the binding energy between i and ] atoms), u the 
co-ordination number, n s the number of atoms per 
unit area of the interface, p the shear modulus and 
k is a constant related to the shape of the solute- 
rich region. Since the interfacial energy, % is 
proportional to (ACN) 2 as shown in Equation 5, 
the change in interracial energy, ATN , induced by 
the motion of Nth dislocation is given by Equation 
6: 

ATN cc (ACN) 2 -- (ACN_I)2 = bd(ACN)2/d(Nb) 

= (2 ~/2/9)A2flb {sin(J3Nb/2 x/2)} 

{1 -- cos/3(2y/x/6 -- 2z/x/3)} 

{cos({3Nb/2 x/2) -- cos(/3(2x -- 3Nb/2)/x/2)}. 

(6) 

As can be seen from this equation, bd(ACu)Z/d 
(Nb) is a periodic function with periodicity of 
x/2rr//3 in the x-direction and ~/67r/f in the 
y-direction. Consequently, the stress for dislocation 
motion can be evaluated from an energy balance 
equation over a segment of x/27r//3 long for a screw 
dislocation and x/67r//3 long for an edge dislocation. 
Equating the change of interfacial energy to the 
work done by the applied shear stress, z, during 
the glide of the Nth screw dislocation over a 
distance Ay or the glide of the Nth edge dis- 
location over a distance Ax, the following two 
equations can be derived: 

rb(x/27r//3) Ay = {2UEVn s + kpr~ 2 } 

Ayi. b(d(ACN)2/d(Nb)) dx (7a) 

(for a screw dislocation) 

~b(x/6~/f) ~ = {2vE~,ns + kuv  2 } 
~/6~/~ 

A x f  ~ b(d(ACN)2/d(Nb)) dy (7b) 

(for an edge dislocation). 
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Figure 1 Stress for dislocation motion in a modulated structure plotted against the number of dislocations emitted by 
the source (f c c). 

Substituting Equation 6 into Equation 7, the 
dragging stress due to the change of  interfacial 
energy can t~e expressed as 

r = (X/2/9)A2~{2Ur~un~ + ktl~2}sin({JNb/2) 

{1 - cos 13(2y/~/6 -- 2z/x/3) 

(8a) 

(for a screw dislocation) 

r = (2 x/Z/9)A~{2VEvn~ + k.n 2 } 

sin ({dNb/2 x/2) 

{cos({Jgb/2 x/2) --  cos~ (2x  -- 3Nb/2)/~/2)} 

(8b) 

(for an edge dislocation). 

Since the stress, 7, is a function not  only of  a 
number of  dislocations, N, but also the position of  
the dislocation, i.e. y and z in Equation 8a and x 
in Equation 8b, the Nth  dislocation receives its 
maximum dragging at different positions in the 
crystal. In Fig. 1, the maximum dragging stress, 
rN, max, for the Nth  dislocation is plotted against 
the number of  dislocations, N, for the case 
X = 2~T/fi = 5 nm. The ordinate is normalized by 
the peak value of  rN, max for an edge dislocation. 
TN, max varies periodically with N. It should be 
noted here that the peak stress for a screw dislo- 
cation differs from that for an edge dislocation 

only by a factor of  1.3. Therefore, based upon 
the present hardening model, similar mobilities 
are predicted for both components in fc  c metals, 
in contrast to the theory by Cahn [1]. This 
will be further discussed in Section 5. Analytical 
expression of  the peak stress, rmax, can be obtained 
by substituting N = (4n + 1) rr/{Jb and y = 
X/6(2n + 1) 7r/2~ + 2z(n = 0, 1,2,  3 , . . . )  for a 
screw dislocation, and N = 2 x/2(6m + 1)/3/3b and 

x = x/2(3m + n  + 1)//3 o r N  = 4 X/27r(3m + 2)/3/3b 
and x = x/27r(3m + n + 2)/~ (n = 0, 1,2,  3 . . . .  , 
m = 0, 1,2,  3 , . . . )  for an edge dislocation: 

rmax = (4x/27r/9) {2U~un~ + k#~2}A2X -1 

(9a) 

(for a screw dislocation) 

Tma x = (X/67r/3) {2UEUn s + k#~72}A2X -1 

(9b) 
(for an edge dislocation). 

It is worthwhile to note that rmax is proportional 
to the square of  amplitude, A z, and inversely 
proportional to the wavelength, X. 

3.2. Body-centred cubic lattice 
Similar expressions for the dragging force of  slip 
dislocations in b c c lattice can be obtained in the 
same manner as above, by choosing new 
co-ordinates so that the x-, y -  and z-axes are 

601 



parallel to []-1 1], [1 ] '2] ,  perpendicular to the 
slip direction [11 1], and [1 10]normal to the 
slip plane, respectively. The dragging stress, 
r, for the Nth dislocation at a point (x, y ,  z) 
is given by 

r = (2 x/3/27) rr {2UEVn s + kp~ = } sin([JNb/x/3) 

{2 (cos(/3z/x/2)) 2 

+ 2 cos~z/x/2) cos(3/3y/x/6) + l/2}A2X -1 

(lOa) 

(for a screw dislocation) 

T = (2 X/3/27) 7r {2UEun s + kp~ 2 }sin(~gb/x/3) 

{2(cos(/3z/x/2)) 2 + l/2}A2X -1 (10b) 

(for an edge dislocation). 

It is evident from Equation 10 that rN, m ~  is a 
function of z, i.e. the position of the slip plane in 
the crystal, in contrast to the case of the f c c  
lattice derived above (see Equation 8). In this case, 
therefore, instead of plotting TN, max against N, as 
shown in Fig. 1, it is necessary to plot TN, max 
against z for the Nth dislocation which satisfies the 
condition sin([3Nb[x/3) = 1 in order to determine 

N o r m a l i z e d  S t r e s s  -Cmax/,,A2/9 
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Figure 2 Stress for dislocation motion in a modulated 
structure plotted against the position of the slip plane 
(b c c). a = 2 U E v n  s + k#rl  2 . 
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the maximum dragging stress rmax. The plot 
obtained is shown in Fig. 2, where the ordinate is 
normalized stress with units of {2UEUn s + kpT12 } 
A2/3. It is interesting to note that the stress for a 
screw dislocation is always higher than that for an 
edge dislocation except in the case cos (J3z/~/2) = O. 

4. Dragging force on dislocations in the 
mott led structure 

In general, the microstructure produced by spinodal 
decomposition in a material which is either 
isotropic or for which there is no significant 
elastic-energy contribution, is given by a super- 
position of sinusoidal composition waves of a 
fixed wave number/3rn (wave number of Fourier 
component receiving maximum amplification) but 
random in direction, phase angle and amplitude [4]. 
Namely, the composition at a point (x, y,  z) is 
expressed 

C(x , y , z )  = Co + ~ A i c o s  
i 

{~m(UiX + ViY + wiz) + 4h}, (11) 

where u, v and w are directional cosines of a com- 
ponent wave vector, and A and r are the corres- 
ponding amplitude and phase angle, respectively. 
To obtain a composition variation representative 
of the mottled structure, a sum of 100 random 
sine waves was computed after Cahn [4], using a 
Gaussian distribution for the amplitudes and a flat 
one for the phase angles, and is hereafter taken as 
an analytical expression of solute concentration at 
a point (x, y,  z). 

Then, let us take a co-ordinate so that the x-,y- 
and z-axes are parallel to the direction of Burgers 
vector, perpendicular to the Burgers vector but 
contained on the slip plane, and normal to the 
slip plane, respectively. The energy balance 
equation for a screw dislocation is given by 

rbLAy = {2UEvns + k#?? 2 } 
L 

AYjo  b{d(ACN)2/d(Nb)} dy, (12) 

where L is the length of dislocation segment, and 
ZXCN is 

ACN = C(x , y , z )  -- C(x --NO,y,  z) 

as before (Equation 5). Since the composition 
variation in the mottled structure is essentially 
isotropic by definition, as mentioned above, this 
equation is valid for all crystal structures having 
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Figure 3 Stress for motion of screw 
dislocations in a mottled structure 
plotted against the number of dislo- 
cations emitted by the source (on 
an arbitrarily chosen slip plane of 
z = 1.25 nm). 

different slip systems. Fig. 3 shows normalized 
critical shear stress, r~/rmax, for the Nth  dislo- 
cation in a mot t led structure with Xm( = 2rr/#m) 
of 5nm,  evaluated from Equation 12. In the 
evaluation, the integration in Equation 12 was 
taken over a long segment L of dislocation, 100 
times as large as Xm. The curves in Fig. 3 corres- 
pond to the dragging stresses for dislocations at 
three different positions on an arbitrarily chosen 
slip plane z = 1.25 rim, which are 50 nm apart, i.e. 
at y = 1.25, 51.25 and I01.25 nm, respectively. It 
is evident from the figure that in all cases only 
dislocations with numbers clustered about  N = 5 
receive maximum dragging while others are less 
affected. It follows that the subsequent dislocations 
around N = 5 can glide quite easily as long as they 

remain on the original slip plane without making 
any cmss-sli p. Extension of  the calculation to edge 
dislocations gives essentially the same results as 
those shown in Fig. 3. 

From these theoretical considerations, the 
deformation process in alloys having a fine mott led 
structure produced by spinodal decomposition, for 
example F e - C r  and A1-Zn alloys, is predicted as 
follows; once the applied stress reaches a critical 
level to emit a given number of  dislocations from a 
source (the number is a function of  Xm and is 5 
for the case X m = 5 n m  as mentioned above), 
subsequent dislocations are easily multiplied from 
the source and tend to continue to glide along the 
original slip plane because of  the reduced dragging 
on it. This proceeds until work-hardening on the 

Figure 4 Maximum dragging stress 
plotted against wavelength of a mottled 
structure. 
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slip plane dominates the flow stress. Thus, coarse 
slip bands are generally expected to be formed in 
this type of alloy. 

Finally, effect of Xm on 7"max is investigated, 
based upon Equation 12 and the results obtained 
are shown in Fig. 4. In this figure, normalized 
critical s t r e s s  Tmax/Tmax()k m = 5 nm) is plotted 
against Xm, where rm~(Xm = 5nm) is the 
maximum dragging stress encountered in a mottled 
structure with Xm = 5 nm. It is noted that the 
dragging stress increases with decreasing Xm, and is 
therefore most effective for structures with small 
Xm. This is in qualitative agreement with results on 
modulated structures described in Section 3. 

5. Compar i son  wi th  some exper imen ta l  
resul ts  

The propriety of the theory is discussed below. At 
first the dragging force is quantitatively evaluated. 
The interfacial energy of a coherent particle has 
been reported to be between 0.2 and 0.4 J m -2 for 
many alloys, for instance 0.25 to 0 .30Jm -2 for 
a Cu-Co alloy [7], 0 .322Jm -2 at the (1 10) 
interface and 0 .370Jm -2 at the (2 1 1)interface 
for an Fe-Cr  alloy [8]. As an exception, extremely 
low energies, 0.01 to 0 .03Jm -2, have been 
reported for the L I 2  ordered 3" phase such as 
Ni3A1 and Ni3Si particles in Ni-A1 [7,9] and 
Ni-Si alloys [10] by experimental investigations 
on the Ostwald ripening for these particles. The 
particles have a cuboid shape whose surfaces, 
{ i00}  planes, are in contact with the {100} 
planes of the matrix. Therefore, the like atom- 
pairs are in high probability at the interface of the 

(1 0 0) matrix plane and the (2 0 0) plane of the 7' 
cube. This is proposed as one reason why the L 12 
particles show such small interfacial energies [7]. 
However, in the case where the 3'' particles are 
sheared by the dislocations having a usual Burgers 
vector in fcc ,  a/2(1 10), as is the case in the 
present work, a new interface is produced on the 
(1 1 1) plane, so that the interfacial energy may 
not be so small, but in the order of the usual value. 
Assuming the interracial energy to be 3' = {2UEvn s 
+ klarl 2 } A 2 = 0.3 J m -2 and the Taylor factor 
r~ = 3, the increment of yield stress due to the 
interracial energy can be approximately evaluated 
from Equation 9b for fc  c polycrystallines having 
a modulated structure. Fig. 5 represents the 
calculated increments against wavelength, X. It is 
clear from this figure that the interfacial energy 
does not have such a small effect on the yield 
stress as suggested by Cahn [1], but makes a fairly 
large contribution to the yield stress in fine 
modulated structures, particularly those whose 
wavelength is less than several nanometers. Such a 
fine composition wave is usually produced at the 
early stage of ageing on spinodal decomposition. 

Fig. 6 is a transmission electron micrograph, 
taken from a foil which was prepared from a 
Ni-40 at. % Cu-5.5 at. % Si single crystal aged at 
773 K for 6.0 • 103 sec and then elongated until 
the end of stage I in the stress-strain curve. 
Structural changes with ageing in this alloy system 
have already been reported previously [11, 12], 
where the periodic microstructures resulting from 
spinodal decomposition have been clearly found 
in a range of Ni -Cu-Si  (Ni-40 at. % Cu-3 to 

Figure 5 Increment of yield stress 
plotted against the wavelength of a 
modulated structure. 

604 

'E 
z400 

Q 

e 
"s 

~200 
i i  

J i  

I I 

0 i i 
o 5 IO 

i i 

TYPE 

y ~  0 . 3  j rd~ ) 

I I 

15 20 
Wavelength (nm) 



Figure 6 Dislocations in a modulated structure of Ni-37.8 at .% Cu-5.6 at .% Si alloy aged for 6.0 X l03 see at 773 K. 

12at. % Si) alloys. The foil was cut parallel to 
the primary slip plane (1 1 1). 

Many dislocations multiplied from a Frank-  
Read source are semi-circular in shape, showing 
that the mobility of a dislocation is not so different 
between the screw and edge components. If the 
magnitude of the dragging force for the edge 
component is much larger (over five times), than 
that for the screw component, as given in Cahn's 
theory [1], then the screw dislocations move a 
greater distance than the edge components, This 
theoretical inference, however, is inconsistent with 
the dislocation configuration seen in Fig. 6. On the 
other hand, the dragging force resulting from the 
interfacial energy shows little difference between 
the screw and edge components, therefore the 
mobilities should be almost the same, which 
explains the experimental finding in Fig, 6. 

6. Conclusions 
Influence of the interfacial energy on the yield 
stress of the spinodally decomposed alloy was 
investigated. The results obtained are as follows: 

(1) An increment in the yield stress, resulting 
from the effect ofinterfacial energy is proportional 
to the square of the amplitude and to the inverse 
of the wavelength for the morphologically anisot- 

ropic structure (modulated structure). Equations 
obtained for the fc  c crystal are 

~" = (4 X/2~r/9) {2UEvns + k/Jr~}A2X -I 

(for a screw dislocation) 

z = (x/67r/3) {2UEvn s + kU~2}A2X - '  

(for an edge dislocation). 

Strengthening due to this effect may be in priority 
for the fine modulated structure formed at an 
early stage of ageing. The dragging forces for screw 
and edge dislocations are little different in the fc  c 
crystal, whereas in the b c c crystal, screw dislo- 
cations always receive a higher dragging force than 
edge dislocations at all placed except at specified 
slip planes. 

(2) In the morphologically isotropic microstruc- 
ture (mottled structure), a specified numbered 
dislocation (5th dislocation for the case Xm = 
5.0 nm) receives maximum dragging force, and the 
other dislocations are not dragged so strongly. 
Consequently, the sources which once produced 
this critical number of dislocations can subse- 
quently easily continue to multiply. This may 
introduce coarse slip into the mottled structure 
and result in the stress concentration at a grain 
boundary or inclusion interface. 
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